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Vl - DIRECTIONS IN PROPULSION CONTROL

Carl F. Lorenzo

This section discusses research at NASA Lewis in the area of propulsion

controls as driven by trends in advanced aircraft. The objective of the Lewis

program is to develop the technology for advanced reliable propulsion control

systems and to integrate the propulsion control with the flight control for

optimal full-system performance.

CONTEMPORARY PROPULSION CONTROLS ISSUES

The primary drivers seen for propulsion control research are a continuing

increase in aircraft and propulsion system complexity, increased dynamic cou-

pling between the aircraft and the propulsion system, and a continuing need to

reduce control system weight while increasing reliability.

The demand for increased functionality for future aircraft and the desire

to optimize aircraft and propulsion systems as an integrated entity has led to

a large increase in the physical complexity of the aircraft/propulsion systems.

The new functionalities can include vertical and short-takeoff-and-landing

capabilities coupled with high-speed cruise. To achieve these capabilities

special-purpose aircraft are being designed with a high degree of dynamic cou-

pling between aircraft and propulsion systems. This is a dramatic departure

from traditional aircraft design where such coupling was minimized. The effect

of large dynamic coupling is to increase pilot work load. Advanced controls

can help alleviate the problem of pilot work load and allow optimal aircraft

performance to be achieved; however, this necessitates that the unified or

integrated design approach to aircraft flight controls and propulsion control

be evolved.

Control weight as a percentage of propulsion system weight is significant

in spite of gains made by conversion to digital systems. Previous sections of

this paper have discussed our efforts in fiber optics and hlgh-temperature

electronics (using silicon carbide), which should help reduce control system

weight. Further efforts are perhaps best approached by industry as part of the

design process and by applying new materials technologies.

COMPLEXITY ISSUE

Airbreathing engine complexity is reflected by the number of primary con-

trol variables managed for a given engine (fig. VI-I). This is an important

measure, since it indicates the number of sensors required as well as the

amount of actuation, and it is a general indicator of propulsion system com-

plexity. The trend has shown a steady increase in controlled variables over
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the years. With this trend has comethe use of full-authorlty digital elec-
tronic controllers, which have helped in dealing with the complexity issue.
The increase in control components implies a corresponding decrease in control
reliability unless specific measuresare taken to deal with the issue.

DYNAMICCOUPLING

Typical of aircraft with significant dynamic coupling are supersonic
short takeoff and vertical landing aircraft (STOVL)(fig. VI-2), advanced high-
speed x-wing rotor craft, and even hypersonic aircraft where engine air capture
and aircraft pitch control are tightly coupled. Vertical lift aircraft flight
control at low forward speed and through transition are typically dominated by
propulsion control considerations. These aspects provide strong motivation for
research in the area of flight/propulsion control integration.

PROPULSIONCONTROLS

Current activities of the NASA Lewis controls research program are indi-
cated as follows:

(i) Hypersonic propulsion dynamics and control

(2) Reconfigurable control

(3) Controls networking

(4) Sensor failure detection, isolation, and accommodation

The hypersonic propulsion control work includes hypersonic engine dynamic

modeling, propulsion control, and control instrumentation keyed to the NASP

technology maturation program. Dynamic models of the various NASP components

are being developed (refs. VI-I to VI-4) and integrated into full engine models

for study of dynamic ramjet/scramjet stability and control. Several dynamic

inlet models, which include inlet unstart studies, have been implemented, and
combustor models consistent with real-time simulation have been formulated.

The reconfigurable control effort seeks to create expert system intelli-

gence which, in real time, can "redesign" a control system to account for sig-

nificant changes in aircraft or engine behavior. In this process (fig. VI-3)

an on-line recursive identifier will monitor the plant variables to detect

changes in the plant. When such a change occurs an expert system (ref. VI-5)

will be invoked to manage a control redesign using one of several design

approaches. The new design will be impressed on the plant controller. If nec-

essary, a second expert system (yet to be developed) will tune the control for

desired performance.

Efforts in controls networking aim to develop high-performance communica-

tions systems tailored specifically to distributed integrated aircraft flight/

propulsion controls. The magnitude and the time variability of network-lnduced

delay directly impacts control system stability. Thus, network performance,

that is, end-to-end delay as a function of offered load and com_unications

packet size, for various configurations has been both simulated and measured

directly from network systems for various configurations (refs. VI-6 to VI-12).

Further, to improve control tolerance of delay, the use of filters and observ-

ers, and control synchronization across the distributed control system are

being studied (refs. VI-13 to VI-16).

252



FAILUREDETECTIONISOLATIONANDACCOMMODATION

The Sensor Failure Detection and Accommodation program (refs. Vl-17 to

VI-28) strives to attain control system reliability through the application of

analytical redundancy instead of hardware redundancy (multiple sensors for each

measurement). Analytical redundancy uses available sensor information and ref-

erence models of the engine to detect sensor failures and to generate accurate

estimates which replace failed sensor information to the controller (fig. VI-4).

Sensor failure accommodation logic has been developed that uses sensed

signals from the engine and actuators together with analytical models of the

engine to create (Kalman filter based) estimates of the engine parameters.

These estimates (fig. VI-5) are used by the multivariable control as represent-

ing the actual engine variables. Failed sensors are detected by "hypothesis

testing" a series of hypothesis filters, each of which uses all available sig-

nals but one. Likelihood statistics are generated and compared to detect the

failed sensor(s). The failed sensors are then removed from the calculation of

the estimates.

The sensor failure accommodation algorithm and multivariable controller

are implemented (fig. VI-6) in a triple-mlcroprocessor-based control system

(ref. VI-24). The computers calculate (i) the multivariable control laws,

(2) the detection and accommodation logic, and (3) the isolation logic to

determine which sensors have failed. The processors are Intel 80186/80187

based hardware which allow a 40-msec update time while processing the

algorithms in a high-level language (FORTRAN). This computer implementation

was used to validate the detection and accommodation logic both for real-time

simulations and with an actual engine.

To validate the analytical formulation and practical implementation of

the sensor failure algorithm, full-scale tests were performed (ref. VI-22)

with the Pratt & Whitney F-100 engine in the Lewis Propulsion System Labora-

tory (fig. VI-7). The tests were conducted over a wide range of altitude/Hach

number conditions.

In the tests, various forms of sensor failure were electronically imposed

on the control sensors. Actual engine performance in response to an imposed

drift failure in the nozzle pressure sensor signal is shown in figure VI-8.

Such small drift failures are very difficult to detect, and thus the time of

detection is not immediate. It can be seen, however, that the actual engine

thrust loss is quite small. In the figure the "sensed" variable is the signal

that would be normally seen by the control. The "actual" is the "sensed" vari-

able without the imposed drift failure, and the "estimated" is nozzle pressure

as determined by the Kalman filter.

The major events are as follows: at point A, a slow drift is introduced

into the sensed signal, so that sensed signal would begin to deviate at a rate

of i psi/sec. From point A to point B, the control tries to accommodate what

is going on. It senses the pressure rising and opens up the nozzle area. In

response to that the actual pressure begins to fall, until a loss of control

authority at point B. At that point the sensed pressure begins to deviate at

the i psi/sec rate. At point C the logic has determined that failure has

occurred and removes the faulty sensed variable, in this case, nozzle pressure,
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from the estimator calculation. Then the actual signal and the estimate begin

to come back together as the control returns to a normal mode operation. At

point E, without sensor failure accommodation, engine shutoff occurs.

The results of the sensor failure accommodation testing on the F-IO0

engine are summarized as follows:

(I) High-performance failure detection (120 different failure scenarios,

II engine operating conditions, both subsonic and supersonic

conditions)

(2) Good post-failure accommodation performance (no significant loss of

performance power transients with accommodated failures)

(3) Sequential failure detection and accommodation

(4) Simultaneous failure detection and accommodation

(5) Engine control with all feedback sensors failed

One hundred and twenty different failure scenarios were run. Demonstrated

capabilities include the detection, isolation, and accommodation of drift,

in-range step, noise, and large-scale "hard" failures. Failure testing was

done at ii Mach number/altitude operating conditions over the flight envelope.

Also demonstrated was the capability to detect sequential sensor failures as

well as simultaneous failures. The algorithm worked satisfactorily for all

tests. Excellent post-failure control performance was demonstrated including

full-range operation with single sensor failure.

As a demonstration case the F-IO0 engine was run with all feedback sen-

sors failed. (The input sensors Pt 2 and Tt 2 were not failed.) Under the con-

dition of all engine control sensors failed, the controller correctly detected

each failure and accommodated all failures by using the computed estimates for

all the signals. While in this condition the engine was smoothly accelerated

and decelerated as shown in figure VI-9.

The NASA Lewis new thrusts in propulsion control are focused on the

areas of supersonic STOVL integrated control and intelligent system control.

INTEGRATED FLIGHT/PROPULSION CONTROL

The supersonic STOVL aircraft (fig. VI-10) typifies the trend toward com-

plex aircraft with large dynamic coupling between the aircraft and propulsion

system. A NASA Lewis and NASA Ames program will develop advanced integrated

controls methodologies and designs for this application. Current plans focus

on the F-16 aircraft and the F-If0 engine with vectorable nozzles and an ejec-

tor as the vertical thrust effector. The integration problem is to evolve con-

trols designs and methodologies which integrate subsystem controls in a manner

to achieve optimal aircraft performance. Nonlinear simulation models of both

aircraft and propulsion system are being created. Linear control models will

be abstracted from these to be used as a basis for control design. Validation

tests at NASA Lewis will incorporate a piloted simulator and actual engine/

ejector firing together with a simulated aircraft to evaluate developed control

laws. Final validation is planned to be done with the NASA Ames Vertical

Motion Simulator.
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INTELLIGENT SYSTEM CONTROL

The block diagram in figure VI-II indicates an expansion of the tradi-

tional control function into a broad system intelligence (ref. VI-29). This

will be initially applied to reusable space propulsion systems. The inner con-

trol loop will be designed with life-extending methodologies (yet to be deve-

loped) which will combine controls technologies with those of structure and

material sciences. The new interdisciplinary technology will be applied to

state-of-the-art engines such as space shuttle main engine or hypersonic pro-

pulsion systems where transient effects on engine life are important, and where

transient performance must be controlled.

Artificial intelligence concepts will likely be used for the highlighted

functions. An on-board diagnostic/prognostic expert system will identify

impending hardware failures using information from component condition moni-

toring instruments, and engine dynamics monitor and performance information. A

high-level coordinator will determine the required remedial action; for example,

change control request or if necessary invoke a control adapter that will

reconfigure (redesign) the control in flight. This research is expected to

greatly enhance vehicle and propulsion performance, and substantially improve

life, reliability, and maintainability.
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Figure VI-I. - Trends in control complexity of aircraft turbine engines.
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Figure VI-2. - Supersonic short takeoff and vertical landing aircraft.
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Figure VI-3. - Block diagram of reconfigurable control system.
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system.
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Figure VI-7. - Pratt & Whitney F-IO0 as used in sensor failure accommodation

program in Propulsion Systems Laboratory.
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Figure VI-9. - Engine response to throttle transient with all sensors failed.
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Figure VI-IO. - Supersonic STOVL ground test aircraft to be used in integrated
controls studies.
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